Jean Louis Rodolphe Agassiz
Bith Date: May 28, 1807
Death Date: December 14, 1873
Place of Birth: Môtier-en-Vuly, Switzerland
Nationality: Swiss
Gender: Male
Occupations: naturalist, anatomist
Jean Louis Rodolphe Agassiz (1807-1873), a Swiss-American naturalist, was an outstanding comparative anatomist. He promulgated the glacial theory and opposed Darwin's theory of evolution by natural selection.
Paleontology was just beginning to emerge as a science during Agassiz's time; speculations about the distribution of species and their relationships to each other were becoming a major preoccupation of naturalists, and science was taking on an increasingly important place in the curricula of educational institutions. Agassiz played an important role in all these developments, both in Europe and in America.
Louis Agassiz was born at Môtier-en-Vuly in French Switzerland on May 28, 1807. His father, the last of a line of seven Protestant clergymen, instilled in Louis the religious qualities that marked his life, and his mother, Rose Mayor Agassiz, encouraged the precocious taste for science that led him to neglect his books in order to collect a huge assortment of pets.
Early Education
Destined for a career in medicine, Agassiz was sent to school at Bienne at the age of 10, and at 15 to the College of Lausanne. In 1824 he began medical training at the University of Zurich, and in 1826 he matriculated at Heidelberg, where his interest in natural history increased under the influence of the distinguished staff, which included Friedrich Tiedemann and Heinrich Bronn. In the following year at the University of Munich, he came under the lasting influence of Ignaz von Döllinger, a pioneer embryologist.
While at Munich, Agassiz, then only 21 years old, published the work that launched him on his long and distinguished scientific career, The Fishes of Brazil (1829), prepared from the collections of two eminent naturalists, J.B. von Spix and Karl von Martius. This was the most important account of a local fish fauna published to that time. During the following winter he began work on his Recherches sur les poissons fossiles (1833-1844).
Influence of Cuvier
Agassiz moved to Paris in the fall of 1831. Still pursuing medical studies, he nevertheless spent a part of each day with the fossil fish collection in the Museum of Natural History of the Jardin des Plantes. Georges Cuvier, the brilliant comparative anatomist (who at this time was developing a new system of animal classification), immediately became interested in the young naturalist, gave him a corner in one of his own laboratories, and offered him the material he himself had been collecting for years for his own work on fishes. Agassiz worked under Cuvier and adopted his views of the plan of creation, which put Agassiz bitterly at odds with all "developmental" or evolutionary theories.
Cuvier had noted the succession of types in geological history but saw no genetic connection between any of the four great classes he recognized--Vertebrates, Articulates, Mollusks, and Radiates. Working with Cuvier's delineation of types, Agassiz regarded his own investigations as glimpses into the divine plan, of which the structures of the types were the expression. Divine ideas, he held, were especially embodied in animal life, each species being the "thought unit." Agassiz viewed the marvel of structural affinity in creatures of widely diverse habits and outward appearance as a result of the association of ideas in the divine mind--not, as Charles Darwin thought, as proof of common descent. Agassiz further developed the notion that species were created in the localities where they were destined to pass their lives, that is, common forms found in widely separated areas were proof not of migration but of separate creation. Throughout his life he used these ideas to combat every form of evolutionism.
Work on Glaciers
While teaching at Neuchâtel in 1836, Agassiz became interested in glacial action. He concluded that it had probably been a major agency in shaping the topography from the North Pole to the Mediterranean and Caspian seas. He studied ongoing glacial action and other parts of Europe, and in 1840 he published his first comprehensive discussion in Études sur les glaciers (2 vols.). This was followed by other works in 1846 and 1847, in which he established his expanding theory of general glacial action wherever the earth's surface bears drift material and polished or striated erratic boulders.
Move to America
Agassiz left for America in September 1846. On his arrival in Boston, the following month, he was hailed as an internationally famous scientist and was lionized by the scientific community. He gave lectures at Lowell Institute and embarked on an extremely successful lecture tour, which included most of the major eastern cities. Charmed by the enthusiastic receptions he received, convinced that America offered unprecedented opportunities for a naturalist, and disturbed by political problems in Europe, Agassiz decided to make America his permanent home. In 1848 he accepted the chair of zoology and geology that had been created especially for him by Abbott Lawrence at Harvard University. His first wife had died in Switzerland, and in 1850 he married Elizabeth Cabot Cary of Boston. His son, Alexander, and two daughters joined their father in America.
Although Agassiz remained America's most popular naturalist until his death and gained a reputation as a great teacher, he produced no more works of the caliber of those published in Europe. His Contributions to the Natural History of the United States (1857-1862), a projected 10-volume work of which only 4 were published, was his most ambitious undertaking. Its most important portion, the "Essay on Classification," was a statement of the idealistic point of view about to become outmoded because of the Darwinian revolution. Agassiz had no sooner published his first volume than he embarked on a bitter debate with Asa Gray, a fellow Harvard professor and enemy of several years' standing, over the theory of evolution.
Institutional Accomplishments
Agassiz was a fund-raiser without parallel in 19th-century American science. He was instrumental in securing legislative grants and private gifts to establish Harvard's museum of comparative anatomy, where an enormous working collection for the specialist and a series of displays for general instruction were assembled. He became the museum director in 1859. The museum's profound influence during the next few decades as a center of scientific research and study can hardly be exaggerated. With other members of the elite group of American scientists (led by Alexander Dallas Bache) with whom he had become associated, Agassiz helped found the National Academy of Sciences during the Civil War. Only a few months before his death, Agassiz secured an endowment to establish a summer school of science on Penikese Island, which became the first American teacher-training institute. Here teachers learned to see nature and to teach others how to see it by the method of direct experience that Agassiz had used successfully at Harvard.
Agassiz was ill at frequent intervals for several years. He died in Cambridge on Dec. 14, 1873. His last work, another argument against the theory of evolution, appeared in the Atlantic Monthly shortly afterward.
Further Reading
- The outstanding work on Agassiz is Edward Lurie, Louis Agassiz: A Life in Science (1960). Other works are valuable for his correspondence and for assessment by contemporaries: Arnold Guyot, Memoir of Louis Agassiz, 1807-1873 (1883); Elizabeth Cary Agassiz, ed., Louis Agassiz: His Life and Correspondence (2 vols., 1885), especially important for the many letters to and from eminent European and American scientists; Jules Marcou, Life, Letters, and Works of Louis Agassiz (2 vols., 1896), which includes a complete bibliography; and Lane Cooper, Louis Agassiz as a Teacher (1917; rev. ed. 1945), which offers testimony of students about Agassiz's methods. For general background on Agassiz's mode of thought, John T. Merz, A History of European Thought in the Nineteenth Century (4 vols., 1904-1912), is still without a rival. A. Hunter Dupree, Science in the Federal Government (1957), gives the institutional background for Agassiz's work in America.