Barbara McClintock
Bith Date: June 16, 1902
Death Date: September 2, 1992
Place of Birth: Hartford, Connecticut, United States
Nationality: American
Gender: Female
Occupations: geneticist
Geneticist Barbara McClintock (1902-1992) received the Nobel Prize in Physiology for her discovery that genes could move from place to place on a chromosome.
Barbara McClintock was born in Hartford, Connecticut, on June 16, 1902. She had two older sisters and gained a brother when she was two. Her father, Thomas Henry McClintock, was a physician. Upon the birth of their son, the McClintocks sent Barbara off to live with relatives in the country, where she lived on and off until she was of school age. It was here that she developed the deep love of nature that lasted her lifetime. In 1908, the family moved to the Flatbush section of Brooklyn where her father had taken a job with Standard Oil. McClintock rejoined the family and attended the local school. Her love of nature, however, persisted.
After graduating from Erasmus High School in 1918, she took a job rather than go on to college, in part because of lack of parental support. She did so well at private studies, however, that the following year she was allowed to enter Cornell University as a biology major in the College of Agriculture. During her freshman and sophomore years, she had a normal college life, including dating and playing tenor banjo in a jazz band. She was elected president of the freshman class and was asked to join a sorority. Upon discovering that the sorority would not accept Jews, McClintock refused the invitation. She never hesitated to snub the social conventions of her time. Upon receiving her B.A. in 1923 she pressed on to take her M.A. in 1925 and her Ph.D. in 1927, studying cytology. She was appointed an instructor in Cornell's botany department.
The faculty at Cornell's agricultural school during those years was pioneering the development of hybrid corn, and McClintock soon discovered a way to identify individual chromosomes of maize. Between 1929 and 1931 she published, with others, nine papers describing her work. Then, in August 1931, the National Academy of Sciences published a paper on the subject, done jointly with Harriet Creighton, which has been described as "the cornerstone of experimental genetics."
Despite the world wide recognition for her work and temporary teaching positions as well as grants from such major foundations as the Guggenheim Fellowship and the Rockefeller Foundation, Cornell University refused her a tenured faculty position. She accepted one from 1939 to 1941 at the University of Missouri but it turned out badly. It was clear that while she might have gotten a regular appointment at a women's college, other doors were closed to her because of her gender. In 1941 her friend fellow geneticist Marcus Rhoades obtained an invitation for her to spend the summer at the Cold Spring Harbor Laboratory, run by the Carnegie Foundation of Washington on Long Island. The laboratory was a self contained facility that had its own summer houses for researchers. She was offered a one-year position December 1, 1941 and she remained there for the rest of her career well into the mid-1980s. During her first decade at the laboratory she won many honors, including presidency of the Genetics Society of America and election to the National Academy of Sciences, only the third woman to be admitted to that body.
It was during the decade of the 1940s that she began the work which was later to result in the Nobel Prize. Essentially, it was her discovery that genes "jumped" from place to place in a chromosome, what she called transposable genetic elements. Since accepted opinion had it that genes were static, rather like beads on a string, her theory was generally received with either hostility or a lack of understanding. Soon after she presented these findings at a symposium in 1951, she stopped publishing her work, so disappointed was she at its reception. Furthermore, the discovery of the double helix structure of DNA in 1953 turned many geneticists away from the "old-fashioned" technique of McClintock (careful experiment, observation, and recording) to the more mechanistic models of James Watson, Francis Crick, and their associates. Partly because of her solitary nature, but also partly because she wanted to stay in close touch with her experiments, McClintock chose to work alone rather than as part of a large research team. As a result, she was in physical and intellectual control of all aspects of her work. As one colleague put it, "she has a feeling for the organism."
The rediscovery of McClintock's work began in the mid-1960s with the study of aspects of bacteria and became unavoidable in the 1980s with the growth of genetic engineering. In 1981 she was awarded the prestigious Wolfe Prize in Medicine for her work, as well as the Lasker Award. The MacArthur Foundation appointed her its first Prize Fellow Laureate; then in 1983 she received the Nobel Prize for Physiology or Medicine.
A deeply private person, McClintock continued to pursue her work alone and with the same holistic perspective she used throughout her career. Although the basics of her experimental work were not only accepted but honored, some of her larger hypotheses were yet to find an audience.
McClintock spent the remainder of her life studying transposition at Cold Spring Harbor. She died on September 2, 1992 shortly after her friends had celebrated her ninetieth birthday. In her obituary, Gerald R. Finks notes that her "burning curiosity, enthusiasm and uncompromising honesty serve as a constant reminder of what drew us all to science in the first place." In 1996 Cold Spring Harbor's DNA Learning Center held an exhibit in her honor featuring a replica of her original 1942 laboratory.
Further Reading
- A good short sketch of McClintock's life and work may be found in Science, 222 (October 28, 1983). A full-length biography is Evelyn Fox Keller, A Feeling for the Organism: The Life and Work of Barbara McClintock (1983). Also see Long Island Business News, October 21, 1996.